Chain Driver

Five Supply Chain Drivers Chain drive

Chain drive was the main feature which differentiated the safety bicycle introduced in 1885, with its two equal-sized wheels, from the direct-drive penny-farthing or.

chain driver

As you simulate how your supply chain works, you learn about the demands it faces and the capabilities it needs to be successful. Develop your supply chain to meet these needs.  Supply chain development is guided by the decisions you make about the five supply chain drivers.  Each of these drivers can be developed and managed to emphasize responsiveness or efficiency depending on the business requirements.

These five drivers provide a useful framework in which to think about the supply chain capabilities you need. They are illustrated in this diagram:

Production –  This driver can be made very responsive by building factories that have a lot of excess capacity and that use flexible manufacturing techniques to produce a wide range of items.  To be even more responsive, a company could do their production in many smaller plants that are close to major groups of customers so that delivery times would be shorter.  If efficiency is desirable, then a company can build factories with very little excess capacity and have the factories optimized for producing a limited range of items.  Further efficiency could be gained by centralizing production in large central plants to get better economies of scale.

Simulate your decisions about production in SCM Globe by the products you define and the facilities you create to make these products.

Inventory – Responsiveness can be had by stocking high levels of inventory for a wide range of products.  Additional responsiveness can be gained by stocking products at many locations so as to have the inventory close to customers and available to them immediately.  Efficiency in inventory management would call for reducing inventory levels of all items and especially of items that do not sell as frequently.  Also, economies of scale and cost savings could be gotten by stocking inventory in only a few central locations.

Simulate your decisions about inventory with SCM Globe by setting production levels at factories and defining on-hand amounts for different products at different facilities.

Location – A location approach that emphasizes responsiveness would be one where a company opens up many locations so as to be physically close to its customer base.  For example, McDonald s has used location to be very responsive to its customers by opening up lots of stores in its high volume markets. Efficiency can be achieved by operating from only a few locations and centralizing activities in common locations.  An example of this is the way Dell serves large geographical markets from only a few central locations that perform a wide range of activities.

Simulate this decision in SCM Globe by the method you use to select locations for your facilities factories, warehouses and stores and the storage capacities and operating expenses you define for these facilities.

Transportation – Responsiveness can be achieved by a transportation mode that is fast and flexible.  Many companies that sell products through catalogs or over the Internet are able to provide high levels of responsiveness by using transportation to deliver their products often within 24 hours.  FedEx and UPS are two companies who can provide very responsive transportation services.  Efficiency can be emphasized by transporting products in larger batches and doing it less often.  The use of transportation modes such as ship, rail, and pipelines can be very efficient. Transportation can be made more efficient if it is originated out of a central hub facility instead of from many branch locations.

Simulate transportation decisions in SCM Globe by the modes of transportation you select to move products between facilities and the frequencies of those deliveries to different facilities.

Information – The power of this driver grows stronger each year as the technology for collecting and sharing information becomes more wide spread, easier to use, and less expensive.  Information, much like money, is a very useful commodity because it can be applied directly to enhance the performance of the other four supply chain drivers.  High levels of responsiveness can be achieved when companies collect and share accurate and timely data generated by the operations of the other four drivers. The supply chains that serve the electronics markets are some of the most responsive in the world.  Companies in these supply chains from manufacturers, to distributors, to the big retail stores collect and share data about customer demand, production schedules, and inventory levels.

SCM Globe simulates real-time information sharing between all participants in a supply chain by making data about operating costs and on-hand inventory available for all the facilities in the supply chain. As you run a simulation you can see what is happening from end to end across your supply chain. At present in the real world, most companies are not able to see much about the overall status of the supply chains they participate in. So in that sense the information available from the SCM Globe simulations is not that readily available to companies in actual supply chain practice.

Please note however that the cost of information continues to drop and the cost of the other four drivers mostly continues to rise.  Over the long run, those companies and supply chains that learn how to maximize the use of information sharing to increase their coordination and get optimal performance from the other drivers will gain the most market share and be the most profitable.

Part of this article is excerpted from my book Essentials of Supply Chain Management, 3rd Edition –

Copyright 2014 by SCM Globe Corp.

Chain drive, Device widely used for the transmission of power where shafts are separated at distances greater than that for which gears are practical.

Chain drive is a way of transmitting mechanical power from one place to another. It is often used to convey power to the wheels of a vehicle, particularly bicycles and motorcycles. It is also used in a wide variety of machines besides vehicles.

Most often, the power is conveyed by a roller chain, known as the drive chain or transmission chain, 1 passing over a sprocket gear, with the teeth of the gear meshing with the holes in the links of the chain. The gear is turned, and this pulls the chain putting mechanical force into the system. Another type of drive chain is the Morse chain, invented by the Morse Chain Company of Ithaca, New York, USA. This has inverted teeth. 2

Sometimes the power is output by simply rotating the chain, which can be used to lift or drag objects. In other situations, a second gear is placed and the power is recovered by attaching shafts or hubs to this gear. Though drive chains are often simple oval loops, they can also go around corners by placing more than two gears along the chain; gears that do not put power into the system or transmit it out are generally known as idler-wheels. By varying the diameter of the input and output gears with respect to each other, the gear ratio can be altered. For example, when the bicycle pedals gear rotate once, it causes the gear that drives the wheels to rotate more than one revolution.

3.2.1 Transmitting power to the wheels

Oldest known illustration of an endless power-transmitting chain drive, from Su Song s book of 1092 AD, describing his clock tower of Kaifeng

Sketch of roller chain by Leonardo da Vinci

The oldest known application of a chain drive appears in the Polybolos, a repeating crossbow described by the Greek engineer Philon of Byzantium 3rd century BC. Two flat-linked chains were connected to a windlass, which by winding back and forth would automatically fire the machine s arrows until its magazine was empty. 3

Although the device did not transmit power continuously since the chains did not transmit power from shaft to shaft,and hence they were not in the direct line of ancestry of the chain-drive proper, 4 the Greek design marks the beginning of the history of the chain drive since no earlier instance of such a cam is known, and none as complex is known until the 16th century. 3 It is here that the flat-link chain, often attributed to Leonardo da Vinci, actually made its first appearance. 3

The first continuous and endless power-transmitting chain was depicted in the written horological treatise of the Song Dynasty 960–1279 Chinese engineer Su Song 1020-1101 AD, who used it to operate the armillary sphere of his astronomical clock tower as well as the clock jack figurines presenting the time of day by mechanically banging gongs and drums. 5 The chain drive itself was given power via the hydraulic works of Su s water clock tank and waterwheel, the latter which acted as a large gear.

Roller chain and sprockets is a very efficient method of power transmission compared to friction-drive belts, with far less frictional loss.

Although chains can be made stronger than belts, their greater mass increases drive train inertia.

Drive chains are most often made of metal, while belts are often rubber, plastic, urethane, or other substances. Drive belts can slip unless they have teeth, which means that the output side may not rotate at a precise speed, and some work gets lost to the friction of the belt as it bends around the pulleys. Wear on rubber or plastic belts and their teeth is often easier to observe, and chains wear out faster than belts if not properly lubricated.

One problem with Roller Chains is the variation in speed, or surging, caused by the acceleration and deceleration of the chain as it goes around the sprocket link by link. It starts as soon as the pitch line of the chain contacts the first tooth of the sprocket. This contact occurs at a point below the pitch circle of the sprocket. As the sprocket rotates, the chain is raised up to the pitch circle and is then dropped down again as sprocket rotation continues. Because of the fixed pitch length, the pitch line of the link cuts across the chord between two pitch points on the sprocket, remaining in this position relative to the sprocket until the link exits the sprocket. This rising and falling of the pitch line is what causes chordal effect or speed variation. 6

In other words, conventional roller chain drives suffer the potential for vibration, as the effective radius of action in a chain and sprocket combination constantly changes during revolution Chordal action. If the chain moves at constant speed, then the shafts must accelerate and decelerate constantly. If one sprocket rotates at a constant speed, then the chain and probably all other sprockets that it drives must accelerate and decelerate constantly. This is usually not an issue with many drive systems, however most motorcycles are fitted with a rubber bushed rear wheel hub to virtually eliminate this vibration issue. Toothed belt drives are designed to avoid this issue by operating at a constant pitch radius.

Chains are often narrower than belts, and this can make it easier to shift them to larger or smaller gears in order to vary the gear ratio. Multi-speed bicycles with derailleurs make use of this. Also, the more positive meshing of a chain can make it easier to build gears that can increase or shrink in diameter, again altering the gear ratio. However, some newer synchronous belts have equivalent capacity to roller chain drives in the same width. 7 In other words, a toothed belt as wide as a chain drive can transmit the same, or even slightly higher, amount of power.

Both can be used to move objects by attaching pockets, buckets, or frames to them; chains are often used to move things vertically by holding them in frames, as in industrial toasters, while belts are good at moving things horizontally in the form of conveyor belts. It is not unusual for the systems to be used in combination; for example the rollers that drive conveyor belts are themselves often driven by drive chains.

Drive shafts are another common method used to move mechanical power around that is sometimes evaluated in comparison to chain drive; in particular belt drive vs chain drive vs shaft drive is a key design decision for most motorcycles. Drive shafts tend to be tougher and more reliable than chain drive, but the bevel gears have far more friction than a chain. For this reason virtually all high performance motorcycles use chain drive, with shaft driven arrangements generally used for non-sporting machines. Toothed belt drives are used for some non-sporting models.

Chain drive was the main feature which differentiated the safety bicycle introduced in 1885, with its two equal-sized wheels, from the direct-drive penny-farthing or high wheeler type of bicycle. The popularity of the chain-driven safety bicycle brought about the demise of the penny-farthing, and is still a basic feature of bicycle design today.

Transmitting power to the wheels edit

Chain final drive, 1912 illustration

Mack AC delivery truck at the Petersen Automotive Museum with chain drive visible

Chain drive was a popular power transmission system from the earliest days of the automobile. It gained prominence as an alternative to the Système Panhard with its rigid Hotchkiss driveshaft and universal joints.

A chain-drive system uses one or more roller chains to transmit power from a differential to the rear axle. This system allowed for a great deal of vertical axle movement for example, over bumps, and was simpler to design and build than a rigid driveshaft in a workable suspension. Also, it had less unsprung weight at the rear wheels than the Hotchkiss drive, which would have had the weight of the driveshaft and differential to carry as well. This meant that the vehicle would have a smoother ride. The lighter unsprung mass would allow the suspension to react to bumps more effectively.

Frazer Nash were strong proponents of this system using one chain per gear selected by dog clutches. The Frazer Nash chain drive system, designed for the GN Cyclecar Company by Archibald Frazer-Nash and Henry Ronald Godfrey was very effective, allowing extremely fast gear selections. The Frazer Nash or GN transmission system provided the basis for many special racing cars of the 1920s and 1930s, the most famous being Basil Davenport s Spider which held the outright record at the Shelsley Walsh Speed Hill Climb in the 1920s.

The last popular chain drive automobile was the Honda S600 of the 1960s.

The Watt steam engine of 1763 used chain drives to transfer power from the piston to the rocker beam, and from the beam to the vacuum pump, for both the upstroke and the downstroke. See illustration.

Internal combustion engines often use a timing chain to drive the camshaft s. This is an area in which chain drives frequently compete directly with belt drive systems, particularly when the engine has overhead camshafts, and provides an excellent example of some of the differences and similarities between the two approaches. For this application, chains last longer, but are often harder to replace. Being heavier, the chain robs more power, but is also less likely to fail. The camshaft of a four stroke engine rotates at half crankshaft speed, so the camshaft gear has twice as many teeth as the crankshaft gear. Less common alternatives to chain drives include trains of spur gears or bevel gear and shaft drives.

Silent chain drives inside a 1912 gearbox

Today, inverted tooth drive chains are commonly used in passenger car and light truck transfer cases.

Chain drive versus belt drive or use of a driveshaft is a fundamental design decision in motorcycle design; nearly all motorcycles use one of these three designs. See Motorcycle construction  Final drive for more details.

First Directory Ltd. First Directory Ltd - 1st for business information. 1stdirectory.com.

a b c Werner Soedel, Vernard Foley: Ancient Catapults, Scientific American, Vol. 240, No. 3 March 1979, p.124-125

Needham, Joseph 1986. Science and Civilization in China: Volume 4, Part 2, Mechanical Engineering. Cave Books, Ltd. Page 109.

Needham, Joseph 1986. Science and Civilization in China: Volume 4, Part 2, Mechanical Engineering. Cave Books, Ltd. Page 111, 165, 456–457.

Poly Chain GT Carbon Belts - Gates Corporation. gates.com.

from 3rd edition Britannica 1797

Green, Robert E. et al. eds 1996, Machinery s Handbook 25 ed., New York, NY, USA: Industrial Press, ISBN 978-0-8311-2575-2 .

Sclater, Neil. 2011. Chain and belt devices and mechanisms. Mechanisms and Mechanical Devices Sourcebook. 5th ed. New York: McGraw Hill. pp. 262–277. ISBN 9780071704427. Drawings and designs of various drives.

Wikimedia Commons has media related to Drive chains.

Motorcycle primary and drive chains explained

Retrieved from https://en.wikipedia.org/w/index.php.title Chain_drive oldid 700159369

Categories: MechanicsAutomotive transmission technologiesMechanical power transmissionMechanical power control.

Mar 22, 2010  Microsoft Corporation. Revised June 2008. Summary: Learn how Driver Chain Manager DCM helps reduce the errors that users of assistive technology.

Here are the top 24 Chain Driver profiles on LinkedIn. Get all the articles, experts, jobs, and insights you need.

Keweenaw Chain Drive Festival Retires. After 20 years of drawing mountain bike riders to the Keweenaw, the Keweenaw Chain Drive Festival organizing committee has.